保定市论坛

首页 » 常识 » 诊断 » 中国农业大学高振江团队发表了蛋白质组学对
TUhjnbcbe - 2023/11/12 10:59:00

前言

年3月欧易/鹿明生物合作客户中国农业大学高振江教授在FoodChemistry期刊上发表题为“Radiofrequencytreatmentacceleratesdryingratesandimprovesvigorofcornseeds”的研究成果。本研究利用iTRAQ标记定量蛋白质组学技术及其它生理生化实验技术探索了结合射频(RF)和热风干燥(HAD)技术RF-HAD在玉米种子上的应用。结果显示,RF-HAD具有加快干燥速度和提高活力的优点,因此可应用于种子干燥。此外,它还有助于更好的储存,因为它有利于种子在干燥过程中具有高活力的休眠。该研究结果将为玉米种子的工业规模干燥提供理论指导。

中文标题:射频处理可加快干燥速度并提高玉米种子的活力

研究对象:玉米种子

发表期刊:FoodChemistry

影响因子:6.

发表时间:年3月

合作单位:中国农业大学

运用欧易/鹿明生物技术:iTRAQ标记定量蛋白质组学(由鹿明生物提供技术支持)

研究背景

玉米(Zeamays)具有很高的营养价值和药用价值,是世界上最重要的谷物作物之一。玉米在收获时总是有很高的水分含量,种子需要干燥至安全的状态,以保持生化稳定。新鲜收获的种子通常在形态上成熟,为使胚胎发育到生理成熟,必须有一个后熟期。由于具有这种后熟功能,干燥可以保证种子质量,它也是抑制微生物生长的重要方法。在种子发芽的初级阶段,无法进行光合作用,而胚和胚乳中的营养成分(例如蛋白质,脂肪和淀粉)则为新陈代谢和呼吸提供了能量。因此,保持营养成分和种子活力势在必行,这可以通过均匀且快速干燥来实现。

作为体积加热方法,射频(RF)加热可以通过分子旋转和带电离子振荡在材料内部产生热量,以便材料可以均匀加热而不会产生热梯度。但是,种子对热敏感。应用于玉米种子的射频技术的研究是有限的。很少有研究全面探索不同RF-HAD条件下干燥的玉米种子的活力,特别是与其他干燥方法相比。本研究通过干燥特性,种子活力评估和iTRAQ标记定量蛋白质组学技术对两种方法(HAD和RF-HAD)之间的干燥样品进行比较分析,以期为为玉米种子的工业规模干燥提供理论指导。

研究思路

研究结果

1、干燥特性

作者首先比较了两种干燥方法的干燥特性,结果如图1和2所示。根据图1(b)所示,在每次回火过程之后,HAD干燥速率得到了改善。通常,较短的回火间隔(意味着较高的干燥频率)导致较快的干燥速率。如图2(b)所示,在HAD的第一阶段,干燥时间为10分钟的干燥速率最低,这是因为获得的材料温度最低(约34℃),而其他材料的最低温度(超过36℃)表明那10分钟不足以加热玉米种子。虽然在干燥过程中观察到30分钟和40分钟的干燥时间达到热平衡,这表明干燥时间可能会有点多。由于干燥回火频率高,因此从样品中获得更高的干燥速率,干燥持续时间为10分钟。但是,增加的干燥回火频率不适合保留种子质量,因为获得了更多的开裂(根据表2),而降低的回火频率则会阻碍其干燥速度。因此,最佳的HAD条件应该是在40℃下干燥20分钟。

图1

分别在HAD和RF-HAD不同干燥条件下玉米种子的干燥曲线(a)和干燥速率曲线(b)

根据图1,RF-HAD玉米种子的干燥速率随电极间隙的增加而降低。如图1所示,很容易得出结论,与HAD相比,RF-HAD可以显著提高干燥速率。例如,当玉米种子干燥至水分含量为0.29(db)时,RF-HAD在电极间隙为mm时的平均干燥速率为0.g/(g*h),而在20分钟,分钟回火下的HAD值为0.g/(g*h)。即使样品重量是HAD的三倍(g/g=3.15),RF-HAD的干燥时间也不到HAD的三分之一。

图2

RF-HAD样品在不同电极间隙处的温度历史曲线(a)和HAD样品在不同干燥时间下的温度历史曲线(b)

2、玉米种子的韦布尔模型

之后,作者利用韦布尔模型对种子的干燥过程进行模拟,β是形状参数,与干燥速率和干燥方法有关,当β大于1时,表明干燥速率在早期阶段先增加然后降低,而当β在0.3到1范围内时,干燥过程将下降。

表1给出了两种干燥方法的玉米种子的Weibull模型模拟结果。标度参数α表示去除样品中63%水分的估计时间,对于HAD样品为这个时间为14.47至16.94h,对于RF-HAD样品为5.03至5.92h,这与RF-HAD加速干燥玉米种子比率这一事实相吻合。对于HAD样品,形状参数β小于0.,而对于RF-HAD样品,形状参数β小于0.86。两种方法的β值均小于1,这表明玉米种子的两种干燥方法均处于降速干燥过程中。测定系数(R2)高于0.,表明了韦布尔模型的合理性。

表1

两种干燥方法在不同条件下的威布尔模型仿真结果

根据表1,随着HAD干燥时间的延长或RF-HAD电极间隙的增加,Dcal,W和Deff,F均大致降低。但是,RF-HAD样品的值受到RF电极间隙的影响很大,高于HAD样品,表明RF-HAD期间的内部水分迁移快于HAD过程中的水分迁移,这与干燥速率的结果一致。通过相同的干燥方法,未观察到与物理尺寸高度相关的Rg的显著差异,其原因可能是对于像玉米这样的硬皮种子而言,干燥过程中的尺寸收缩最小。

3.能量消耗

在给定的玉米种子初始重量(m0=0.63kg)的情况下,随着RF电极间隙(dp)的减小,施加到处理过的玉米种子上的RF功率(PRFm)以及RF功率效率(η)相应增加,在RF-HAD期间,RF比能耗(eRF)降低了。在确定的电极间隙(dp=mm)下,待干燥的玉米种子越多,待干燥的材料吸收的射频功率就越多,因此,功率效率(η)升高,eRF减少。

考虑到与HAD相比,RF-HAD可以处理的材料量更多,因此,作者在RF-HAD中施加的初始重量也比HAD大,此外,回火后的RF-HAD比能耗要小于回火后的HAD。在本研究中,使用了极少量的玉米种子以达到更好的干燥均匀性,从而进行活力评估。因此,单位能耗相对较高。在工业应用中,将应用更大的初始重量,因为随着初始重量的增加,RF比能耗会急剧下降,因此RF-HAD在玉米种子干燥中具有潜在的优点。回火处理有助于降低单位能耗,因此,在工业应用中,由于能耗低,可以提倡回火处理。

4.活力评估

然后,作者对两种干燥方法的种子活力进行评估,评价结果如表2所示。RF-HAD干燥样品的脱氢酶活性(DHA)显著高于HAD干燥样品的DHA,RF-HAD样品的开裂率(CR)值小于HAD的CR。RF-HAD可以更好地降低内部热量和水分梯度,因为降低了玉米粒中的水蒸气分压,从而减少了应力开裂并减少了胚胎损伤。但是,RF-HAD样品的发芽率(GP)小于HAD样品的GP。GP较高的种子通常显示出更好的活力,但高活力的种子并不总是表明发芽能力强。可能是因为不同的材料适应不同的发芽检测方法。一些研究建议不要使用发芽试验作为描述种子活力的唯一关键方法。

种子发芽是一个复杂的过程,在此过程中需要适当的条件,包括温度,湿度和种子养分含量。但是,即使在休眠期间,即使在合适的环境中,种子也很少发芽。在这项研究中,通过RF-HAD和HAD处理确保了样品的发芽测试环境相同,但是处理后的GP和DHA的结果却相反。由于经过RF-HAD处理的未发芽种子在发芽试验后状况良好,可以推测通过RF-HAD处理的玉米种子可能进入休眠期,导致GR异常降低。

表2

比较两种干燥方法的种子活力

5.休眠对GP的影响

作者进一步对休眠处理前后的干燥玉米种子GP进行分析,结果如表3显示。在两次干燥处理之后,GP均非常低,一个月后,GPs继续降低至很小的值。然而,在休眠中断处理之后,对于HAD和RF-HAD样本,GP分别观察到18%和48%的GP增量,初步表明与RF-HAD样本的高DHA相对应的低GP是由于休眠。作者在这项研究中使用的玉米种子品种表现出其在耐热性和耐干性方面的优点,它具有非常厚且坚韧的种皮,可能导致水和空气难以渗透到种子中,从而导致休眠。经过休眠处理后,具有较高DHA的RF-HAD玉米样品的GP高于预期的HAD样品,这表明RF有助于增加种子的活力和种子的GP。但是,GP仍低于可接受的标准。

表3

玉米种子休眠试验前后的发芽率

6.iTRAQ蛋白质组学分析

通过iTRAQ技术进一步比较了本研究中的两个最佳样品,即RF-HAD样品在mm的电极间隙处干燥,以及HAD样品在40℃干燥20分钟的干燥时间。

6.1:差异蛋白质鉴定(DAP)

在两组样品中,共鉴定出种蛋白质,其中种蛋白质具有定量信息。在干燥样品中鉴定出78种DAP,其中与HAD干燥样品相比,RF-HAD干燥样品中48个DAPs丰度增加,30个DAPs丰度降低。

在最近的研究中,一般认为种子休眠的主要原因是皮质功能障碍,胚胎休眠和发芽抑制剂。RF-HAD样品中的许多抑制剂蛋白要比HAD样品中的抑制剂蛋白高,如抑制素,半胱氨酸蛋白酶抑制剂,木聚糖酶抑制剂蛋白和线粒体抑制剂。这可能是RF-HAD样品具有较高DHA但具有较低GP的原因。球蛋白是一种与代谢高度相关的蛋白质,RF-HAD样品中的球蛋白高于HAD样品,这与RF-HAD样品比HAD样品具有更高的活力这一事实相吻合。RF-HAD样品中某些DAP的丰度降低是与代谢相关的酶,例如蔗糖合酶,其降低表明酶促反应减弱,导致蔗糖合成减少,这在植物生长和渗透调节中起着至关重要的作用。

6.2:DAP的生物信息学分析

为了识别DAP的功能特征,进行了GO注释和富集分析。如图3所示,按生物学过程,分子功能和细胞成分分类的蛋白质分为40多个功能组。在生物学过程中(图3B),蛋白质主要参与种子成熟,分解代谢过程和胚胎发育。在细胞成分组中(图3C),蛋白质主要与细胞质,液泡和膜有关。在分子功能类别中(图3D),蛋白质主要负责半胱氨酸型内肽酶抑制剂的活性,β-脲基丙酸脂酶的活性和肽酶抑制剂的活性。因此,RF-HAD可能由于分解代谢过程中的调节,细胞质或液泡组分的变化以及抑制剂的增加而帮助玉米种子休眠。

图3

RFHAD和HAD干玉米种子之间的GO注释和DAPS富集

相关讨论

回火过程可以在一定程度上提高HAD的干燥速率,同时延长总干燥时间。对RF-HAD的干燥特性和活力评估表明,减少的电极间隙影响了种子活力,同时降低了比能耗。对这两种方法的比较研究表明,在RF-HAD工艺中,干燥速率显著提高,即使样品重量增加三倍,其干燥时间仍不到HAD的三分之一。在RF-HAD样品中获得了较高的DHA和较低的GP。休眠处理后GP的增加表明RF-HAD干种子处于休眠状态。与HAD样品(在40℃,干燥时间为20分钟的干燥时间)相比,RF-HAD样品中鉴定出78个DAP(电极间隙为mm),其中48个上调,30个下调。生物信息学分析结果表明,RF-HAD样品的生物学过程、细胞成分以及酶抑制剂可能会发生变化。RF-HAD具有加快干燥速度和提高活力的优点,因此可应用于种子干燥。此外,它还有助于更好的储存,因为它有利于种子在干燥过程中具有高活力的休眠。对于玉米种子的工业规模干燥,就能耗而言,可提倡采用回火的RF-HAD。

研究结论

本研究利用iTRAQ标记定量蛋白组学技术及其它生理生化实验技术探索了结合射频(RF)和热风干燥(RF-HAD)技术在玉米种子上的应用,为了更好地表明将RF-HAD应用于玉米种子的可行性,对回火间歇式热风干燥(HAD)进行了比较。电极间隙的减少与平均加热速率和功率效率的提高相对应,从而导致种子活力和比能耗降低。与HAD相比,RF的帮助显著提高了玉米种子的干燥速率,并将干燥时间缩短了多达70%。与HAD样品相比,RF-HAD样品中的脱氢酶活性(DHA)较高,但发芽率(GP)较低。打破休眠结果以及iTRAQ蛋白组分析显示,玉米种子通过RF-HAD提升为休眠状态。该研究结果将为玉米种子的工业规模干燥提供理论指导。

蛋白组学在食品储藏研究中的应用

本篇是一篇典型的标记定量蛋白质组学在食品储存方面的应用客户文章,鹿明生物不仅可以采用iTRAQ蛋白质组学技术运用到科学研究中、同时也推出了TMTpro16plex标记蛋白质组学:一次可同时标记16个样本,可帮助解决您的实验设计是4组3重复,5组3重复等样本的设计;

产品特点:

高通量

提高数据稳定性

定量准确度高

详情请戳:技术升级

鹿明生物正式推出TMTpro16plex蛋白组学研究技术

欢迎百度搜索访问鹿明生物

1
查看完整版本: 中国农业大学高振江团队发表了蛋白质组学对